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COMPARATIVE  PROPERTIES OF SOME  TIME  DIFFERENCING  SCHEMES  FOR  LINEAR  AND 
NONLINEAR  OSCILLATIONS 

JOHN A. YOUNG ’ 
The University of Wisconsin, Madison, Wis. 

ABSTRACT 

The properties of 13 computational methods for  the integration of first-order differential equations in time  are 
studied. Special attention is given to  the representation of periodic fluctuations in a  simple spectral baroclinic model 
of the atmosphere. Errors in the energy, three dimensional scale, and frequency  for  linear and nonlinear oscillations 
are  evaluated. 

Comparisons of both one-step and two-step  methods are made. I t  is found that  the two-step schemes compare 
favorably with one-step methods only when given the  advantage of a smaller time increment. Even  then,  it is con- 
cluded that certain one-step procedures incorporating  two or more extrapolations over each constant increment of 
time produce  errors which grow most slowly. With small time increments,  these errors  are generally made smallest 
by increasing the  number of time  extrapolations a t  each step  rather  than by decreasing the  time increment. 

1. INTRODUCTION 
The  continued  development of numerical modeling in 

recent  years  has  produced  insight  into  the  mechanisms of 
various  atmospheric  phenomena.  The  broadened  spectrum 
of physical  problems  has been accompanied by widened 
investigations  into  appropriate  numerical  methods. Im- 
pressive advances  in  the  area of space differencing have 
resulted [I]. On the  other  hand, meteorological interest 
in time-differencing procedures has usually been limited 
to  spectral  studies of geophysical circulation models 
(Bryan [3];  Lorenz [ 131; Veronis [17]). However,  Lilly 
[lo] has  suggested that time-differencing methods will 
nom assume a new significance as a consequence of the 
advances in space-differencing methods.  Developments 
in  this  area would appear t.o be especially important for 
studies of the large-scale climate  and  its long-period 
fluctuations. 

The purpose of this  paper is to  present  comparative 
properties of a number of time-differencing schemes de- 
signed to  handle atmospheric-like  oscillations. To a  large 
extent,  the  methods considered here  supplement  those 
discussed by  Kurihara [9] and Lilly [lo]. In this  paper, 
major  attention is given to “one-step” or “deterministic” 
schemes whereby the solution a t  a given time  step  depends 
only  upon the single state of the  system at  the preceding 
time  step. Such  methods  are unlike  “multistep”  methods 
which often  produce  nonphysical  “parasitic”  solutions. 
However, the suppression of truncation  errors in  one 
step  methods  cannot  be accomplished by  the use of past 
solution  information, as in the case of multistep  methods. 
Thus,  the  deterministic scheme must develop greater  ac- 
curacy  by  generating  approximate  states  (usually  in  the 
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future,  through  the use of a t  least  one  forward  difference). 
As will be seen later, trhe extra work often  appears to be 
worth  the  extra effort  for the one step  methods. 

In section 2, the  exact  linear  and  nonlinear  charact,er- 
istics of a maximally simplified baroclinic model described 
by three  spectral  variables  are  presented. The compara- 
tive  performances o f  10 different one step  computational 
schemes in this  model are given  in sect>ion 3. Section 4 
demonstrates  that  reduction of t’he time  increment At 
is not always  t,he  best  way  to  increase  accuracy  for  one 
step schemes. Section 5 summarizes  the  properties of 
three  different  two step  methods. Concluding remarks 
are  contained  in  section 6. 

9. SPECTRAL MODEL  OSCILLATIONS 
The governing  laws for numerical models may  often  be 

expressed as a syst,em of first-order ordinary  differential 
equations in time t :  

d y = j t ( X , ,  xz, . . .,x“; t ) .  (2.1) 

Here, i= 1, 2,  . . ., M. The elements xf denote  the de- 
pendent  variables a t  specific points  in  grid  point or ware 
number  space.  Included  in  the  functions ff are  quadratic 
representations of t,he energy-conserving advective 
processes. 

With given initial  conditions,  the  finite  difference ap- 
proximation to the  system (2.1) yields a solution which 
eventually  departs  from  the  exact  solution. A measure 
of the  truncation  error is given by  the  order of the  last 
term in which the  Taylor Series  expansion of (2.1) and 
its finite difference form  agree. This  order of accuracy 
characterizes  the local generation of error but is not 
helpful  in  describing the accumulat,ion of error over  a 
length of time.  Instead, we study  the  computational 
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stability of solutions for a  particular  numerical model. 
The  stnbilit,y  properties  we  indicative of integrated  errors 
and  hence  depend upon the  character of the solut,ion 
itself. 

We confine ourselves to  studying  simple  linear  and non- 
linear  systems that exhibit periodic fluctuations. A similar 
approach  has been followed by Lilly [lo]. A particularly 
simple  system arises from the  spectral form of a two-level 
quasi-geostrophic model  with fixed stability. In  the case 
of adiabatic,  frictionless flow, the  equations  have been 
given by Lorenz [12]. With  slight  changes  in scaling and 
definitions,  these  contain  the following energetically  com- 
plete subset: 

~==--C(l+Bz)-lOw$w d t  

~ = + c ( ~ + B , ) - I ( ~ + B , - B , ) ~ , ~ L ~  d t  

d*= - CB;I (B,- B,) &ew. d t  (2.2) 

Here, $ and 6 are nondimensional representations of the 
vertically  averaged  ('%arotropic")  and  vertical  shear 
("baroclinic") flows, respectively. t is  nondimensional  time. 
The  static  stability a is  contained  in  the  parameters 
Bz=Zi and B,=&&, where ai=1.000 and a$=1.444444 
are effectively squared  wave  numbers. The  subscripts 2 
and U' refer t,o the zonal and  wave  modes,  respectively. 
C= +0.8002814 is the  interaction coefficient for this  set. 

With a=0.10 and initial  conditions 8,(0)= + O . l O O O ,  
ew(o)=+0.0349, and $,(O)=O.OOOO, an  exact  solution  to 
the  set (2.2) is given in  terms of elliptic functions of time 
(Lorenz [ 111). The solution is 

&(t) = +O.lOoo sn (ht+K) 

e,(t) = + O .  1020 dn (ht+K) 

$,(t)= -0.0582 cn (ht+K)  (2.3) 

where K=2.5046 and h=+0.0406. This  solution  exhibits 
growth of the  initially small wave disturbance  variables 
e, and $, a t  the expense of 0,; 9, decreases to zero and 
then becomes negative. The vertical  tilt of the  fully 
developed  wave then changes sign, producing  a  meridional 
heat flux which  brings  the  system  back  to its original st,ate 
after  a nondimensional  length of tlime 4K/h=247.2. 

While this period is the  fundamental one  for the  system, 
Fourier  analysis of the elliptic solutions shows that  the 
nonlinearities produce higher frequencies in  abundance 
(Davis [4]). These  high frequencies are associated with 
transitional  time scales much  shorter  than  the  fundamental 
period of oscillation, and arise from  the  initial wave  growth 
and its subsequent feedback onto t,he zonal flow. Such 
sudden  changes occurring in  the  midst of otherwise slow 
variations  provide  a  stringent  test of any  computational 
scheme. 

These  solutions specify unique  amplitudes for each 
fluctuating  variable a t  all times. For t,he later  computa- 
tional  tests it is convenient  to define certain  quadratic 

quantities which do not  change  in  time  in  the case of the 
exact solution. The first of these is the  sum of the  available 
potential  energy  and  the  kinetic  energy: 

The  total  squared  potential  vorticity 

also a  constant, is used with E to define the second quan- 
tity S=V/E. S is also invariant; it has  the "units" of 
ai, a$, or 2' and  thus is  a  measure of the  three dimen- 
sional scale of the flow.2 We see that E and S are phys- 
ically meaningful  parameters which measure the gross 
amplitude of the  system  and  the  spectral  distribution of 
amplitudes, respectively. 

It is important  to realize that  the period of the  non- 
linear oscillation is not  independent of these  quantities; 
with these quadratic  interactions, increases in  amplitude 
result in proportionately higher freq~encies.~  To see this, 
suppose the  amplitude of each  variable is initially  altered 
by  the  same  multiplicative  factor 8. Then E and V are 
altered  by 02, while S remains  unchanged. It is evident  in 
the  paper  by Lorenz [ l l ]  that h2 is  proportional  to  a  linear 
combination of E and V;  hence h is increased by  the  factor 
8. K is uninfluenced by 8. Thus  the period 4Klh varies  as 
8". 

The  above  features  are useful tests of computational 
schemes for  a nonlinear system.  However, the analysis of 
a  linear  system is also helpful, and is more  simply  accom- 
plished. In  the limit a+ m , baroclinic instability of OZ is 
suppressed and  the  set (2.2) reduces to 

d8"-0 " 
d t  

*=-e d t  (T) a$ - ai 

Equation (2.6) is of the  linear form 

dx . 
" " Z W X  

The solution to (2.7) with  initial  conditions x(O)=s can 
be written  as x(")=G"q (2.8), where X(") stands  for x 
evaluated a t  times t=to+nAt. G here has  the  properties 
IGI=1 and  arg (G)=p. We  note  that p alone determines 
the  frequency of this  linear oscillation; the  frequency is 
thus  independent of amplitude 171, in  contrast  to  the  non- 
linear case. p= (wAt) is generally small; it measures the 
constant  increment At against  the period of oscillation 
2*/w. 

2 In barotropic flows such as those considered by Lorenz Ill], Lilly [lo], and F j W f t  15). 
the "vertical scale" is fixed and S then describes the  two-dimensional  wale associated 
with  the horizontal  flow structure. 

the later stages, for by shortening  the oscillation period the  amplitude error can grow all 
3 This interrelation appears to provide  a  mechanism for the  rapid  growth of errors in 

the faster having once  reached  moderate size. 
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Solutions to one-step finite difference analogs of (2.7) 
are also of the form (2.8), but often exhibit amplification 
(lGl>l) and a different frequency of oscillation (arg (G) 
# p ) .  For  later discussion we define the amplification 
factor  as IG( and  the frequency  error  factor as  the leading 
terms in the expansion of arg ( G ) / p  in  terms of p .  1GI2 
reflects amplification of energy E, while the scale param- 
eter S in  this linear case is a constant. 

3. PROPERTIES OF ONE-STEP  COMPUTATIONAL 
METHODS 

Table 1 lists  and defines the  computational  methods 
tested. The  names of established  methods are  stated 
where known to the  author. Nameless  methods  originated 
from heuristic  considerations and  are identified by capital 
letters. As seen from the  table,  the  first 10 methods 
required  information at  only  one  time step  and  most 
were of second-order  accuracy. Precise estimates of the 
truncation  error, not shown, were usually smaller when 
the  number of evaluations of f r ( x 1 ,  . . . .  x M ;  t )  per  time 
step was increased. 

The defining formulas  for  the  methods are  indicated 
in  abbreviated  form,  with fin) standing for fi(Xp), 
. .  ., x$); t,+nAt). Euler's modified method was the 

only  implicit  method  examined. In  practice,  a  variable 
number of iterations (4-7) were required  to  produce 
convergence of this solution. With one iteration, it reduced 
to the  Heun  method, which is the "double-forward'' 
approximation used by Lorenz [13]. The  Heun  method 
may also be classified as one of the  Runge-Kutta  family 
(Hildebrand [7]). 

Method A used the "double-forward" estimate of 
as basis for a  subsequent  step  by  a  centered 

difference rule.  Method A' was designed to provide  one 
small  time  increment 0 IaAt 5 At for each fixed double 
interval 2At. I n  other  respects  method A' coincided with 
method A. 

*Method B was a simplified version of A in that a 
single forward difference estimated , followed 
by a  centered difference extrapolation.  Method C calcu- 
lated  the  quadratic  terms  in j t  following a  '(geometric- 
mean"  approximation  involving x:") and  a  forward 
difference estimate of i t  differed from the  Heun 
method which used an  arithmetic  average o f  these 
quantities. 

The  Kutta method used forward differences, centered 
differences, and  arithmetic  averaging  to produce a high 
order of accuracy. 

TABLE 1.-Defcning characteristics of some computational methods for Jirst-order  equations. "Steps" denotes  the number of initial  information 
time levels required by the procedure. "Order of accuracy" is obtained from a Taylor series analysis. 

Method (description) Steps 

I- 
One-Step Methods 

1. Euler's modified ................................. 

2. Heun ............................................ 
(trapezoidal) 

(double forward) 

3. MethodA ........................................ 
(double forward, centered) 

4. Method A' ....................................... 
(method  A;  variable a t )  

5. Method B-- ...................................... 
(forward, centered) 

6. Method C ........................................ 

7. Kutta ............................................ 
I 

8. Method D ....................................... 
(twoforwards, latestvalues,rmriableordw) 

9. Method D'- ...................................... 

10. Euler-. .......................................... 
(forward) 

1 

1 

1 

1 

1 

1 

1 

1 

1 

1 

Two-Step Muhods 

11. Adams-BaMorth ................................ 2 

12. Centered ......................................... 

13. Centered. ........................................ 
(uncorrected) 

(correction A) 

accuracy 
Order of 

2 

2 

2 

2 

2 

2 

4 

1 

1 

1 

2 

2 

2 

Number 
Iff;  evalu- 
ations per 

Formulas or description 

time  step 

I 

- __ 
Explicit 

or 
implicit 

I 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 

E 
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Scheme D consisted of two successive operations at  
each time step, each  similar to a  forward difference with 
time  increment At/2. Unlike the simple  forward difference, 
t.he latest  estimates of the variables xi were used in evalu- 
atingj,.'  Thus,  in  the first operation, j ,  would depend only 
upon the variables xi"), . . . .  x,$); with 
determined, ji would involve X?+'/*)* . X?), . . . .  x,$'. 
Finally, x?+ll2)*, . . . .  In+l /a  * . x,$) would determine 
j,,, and hence ~g+"~)* .  The second and final operation 
consist,ed of reversing the order  in which the variables 
were solved and  then  repeating  the  first  operation,  starting 
with the  set xin+llz'* , . .  ., xC+'/~)* and  obtaining 
X;n+l), . . . .  x$+". 

From  this descript,ion it appears that solutions  obtained 
by  method D would usually  depend  upon the order in 
which the variables were solved. This could be a disadvan- 
tage in a grid point or wave  number  space  calculation, 
for the geometry of the scanning pattern would determine 
the variable  order  and hence geometrically  bias the 
solution. 

Tn an  attempt, to minimize this  order  bias scheme D' 
was inventsd. I t  coincided with scheme D except that 
the order of variables  was  determined  randomly before 
each new time step.  This  method  appeared  to  be mainly 
of academic  interest, since the  programming difficulties 
would be  severe in a  system  with many degrees of freedom. 

The remaining  methods shown in'table 1 are well known 
and  are useful in la.ter comparisons. The two-step schemes 
are discussed in section 5 and Appendix A. 

4 This aspect of method D was related  to  the Gauss-Seide1 iterative  method of solving 
linear system of algebraic equations. 

Let us now examine  properties of the one-step schemes 
as shown in  table 2. Considering the linear oscillation first, 
we note  that amplification factors for many one-step 
methods  involved p to a power a t  least  equal to 4;  higher 
powers corresponded to increased  sensitivity of energy 
errors to a  change  in At. On the  other  hand,  the frequency 
error was not so sensitive to At, except in  the highly ac- 
curate  Kutta scheme. 

Most  numerical  solutions for the nonlinear case were 
obtained  with 24 time  increments  per period of oscillation. 
Comparative  energy amplification values were found  to 
be in qualitative accord with  those of the linear oscillation. 
However, the  shorter  internal  time scale of the nonlinear 
solution produced large  quantitative differences. Frac- 
tional  errors  in the scale parameter S were much smaller 
than those in E, but tended to resemble the E errors. 
Frequency  errors exceeded E errors as  in  the linear case. 
However,  as expected from  earlier  remarks,  comparative 
frequency  errors were not correctly  indicated by the 
linear  results;  in some cases the  fractional  frequency error 
changed significantly with time. 

In view of the linear  solution  properties i t  is not surpris- 
ing that  the schemes numbered 2, 5, 6, and 10 were 
inferior to  the  other more  complicated one-step methods 
when applied to  the nonlinear  system.  Despite its two 
part simplicity,  scheme D was surprisingly successful in 
t'he  nonlinear test; as expected, the errors  varied  with the 
order in which the  three  variables were solved. Interest- 
ingly, scheme D'  with  randomized  order was compara- 
tively poor. 

Results for method A' showed that, given an average 
value of At, the use of variable  time  increments  resulted  in 

TABLE 2.-Properfies of one-step  computational  methods  taken  from  linear analysis and  the numerical solutions of nonlinear  equations. All 
numerical  values arc estimates based upon the first several cycles.  Numerical  values  estimated from linear  oscillations with the  same period 
as the nonlinear  oscillation are shown in parentheses. 

I Linear periodic solution 

Method 
Amplification factor Frequency error factor 

1. Euler's modified.. .................... 1 . .  .) 
?. IIeun. ................................ I (l+p'/4)'/* . .  .) 
3. Method A". ........................ 
4. Method A': 

(l+p2/24+ . .  .) (1 +p'/64)"2 

Genernl a .  ............................ (1+&6/64)1/4 
xcl+(z-P)~pe/64)~~* +o*B)+ .) 

(1+p2(1/6-o/4 . .  
a31.0. .  

(1+.0617p2+ , .) (1+.059?p6+ .)I/* n-0.6. ............................. 
(1+.0467p?+ .) (1+.02,M?U+ .)1/2 a=0.8- 

(1+.0156pS)1/2 

a=O.O . .  . .  ............................... (1+.5ooop6+ ,)1/2 

(1+.1429p6+ . .  . )I/% O<a<l picked randomly ........... 

(1+.1667p2+ .) 
(l+.C~33lpa+ . .  .) 

......................... . .  (1+.0417p2+ .) 
. .  . .  .............................. . .  . 

5. Method B ............................. 
6 .  Method C ............................ 

R. Method n: 7. Kutts ................................. 

order of solution of variables: 
(ea,ey, J . ~ )  ......................... 
w W .  em, ez) ......................... 

......................... 
8. Method D': 

(ex .  +w.ea) I 
random variable order ................ I 

(l+p2/6+ . .  .) 
(l+pZ!6+ . .  .) 
(l+p'/'c+ . .  .) 

(l+p2/24+ . .  .) 
(l+pz/24+ . .  .) 
(l+p2/24+ . .  .) 
(l+P2/24+ . .  .) 

10. Euler _ _ _ _  ............................. (l+p2)W 
severe instability commenced at: 

(1--3*13) 

cycle 0.7. ............................................................................... 
cycle 1.i. .  .............................................................................. 
cycle2.i ................................................................................. 
cycle 4.0. ............................................................................... 

Nonlinear periodic solution 

~ 

period 
At lOaXnet fractional 

energy error  per cycle 

1/24 <+.as (0) 

1/24  "0.48  (+0.12) 
+13.  (+3.4) 

............ 

1/24 
1/24 
1/24 
1/24 

1/24 

:E 
1/24 

1/24 
1/24 
1/24 

1/24 

+0.48 (fO.12) 
"0.75 (+0.19) 
+1.6 (+.45) 

4-16, (+3.8) 

+14. (+l.l) 
"158. (f28.) 
+110. 

+6.7 (0) 
I .........I ......................... 

+2,090. ("3,642.) 
+1,8W. (+1,200.) 

+8i5. (+690.) 

requency error  per cycle 
lOIXnet fractional 

f l 6 2 .  (+ll.) 
+104. (+3.) 
"64. (+2.8) 

+46. (-5.3 

. . .  
variable: 

variable: 
+70. to -1m.)(+11.4) 

+w. to -180.)  (+5.7) 
i-167. (+ll.) 
+125. ( + X )  

+5J. (+.59) 

+54. (+2.8) 

+67. (i-2.5) 
+67. (+2.8) 

MlO. ( f2.8) 

......................... 
f80. (-22.8) 
+4fi. (-5.7) 
+60. (-2.5) 
+5P. (-1.4) 

WXnet fractional 
a l e  error  per cycle 

.................. 

. ". . . . . . . . . . . . . . . . . . .  ~ - .. - ........... . 
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increased computational  errors  for  both  linear  and  non- 
linear oscillations when  applied to method A. Linear 
analysis suggests that this conclusion is valid for  other  one 
step schemes as well. 

Thus,  the  outstanding one-step methods were those 
numbered 1, 3, 7,  and 8. Further  information on  these was 
given by  the maximum local errors in E and S. These 
errors, not shown in  table 2, were  confined to  the  quick 
transition periods of the nonlinear solution. They were 
much  larger  than  the  net  error in the case of Euler’s modi- 
fied method,  despite  the increased number of iterations 
per time  step  during  the  transition. On the  other  hand,  the 
Kutta method exhibited excellent stability  in  this sense, as 
expected  from its small local truncation error. 

4. TIME  RESOLUTION VS. COMPLEXITY OF ONE-STEP 
METHODS 

We  have  noted  that  those one step schemes which  were 
most  simply  calculated a t  each  time step were predictably 
poor  compared to more  complicated schemes. However,  a 
natural question is whether a simple one-step scheme used 
with smaller time  increments  can  compete favorably with 
these more  sophisticated ones. 

To  test  this,  four experiments using the simple Euler 
(forward difference) method  with successively smaller 
values were  performed. With 48 time  increments per 
period, the  Euler scheme  required  about  as much  compu- 
tational  time as each of the schemes 2 ,5 ,  6, 8, or 9 required 
with  only 24 increments per period. From  table 2 we see 
that  the performance of each of the  latter  methods was 
clearly superior to  the  Euler  method  in  this case. Similar 

equal computational  time”  comparisons  made  with  three 
part schemes 3 ,4 ,  and 7 lead to the sGme conclusion. Thus, 
the  Euler  method  appears inferior to more  complex  one 

I (  

step schemes  even  when it is used with smaller time 
increments. 

An additional  experiment was next  performed  with the 
H e m  method  rather  than  the  Euler  method.  The  time 
resolution was increased to 48 increments per oscillation 
and  results  were  compared  with  those of method A used 
with 24 increments per period. It is seen in  table 2 that 
method A was superior  to  the simpler Heun  method  while 
demanding  only X as much  computational time. 

Based  on these results it appears  that increased time 
resolution is not  the  most efficient way to decrease com- 
putational  errors for one-step schemes. Instead, as sug- 
gested by  the amplification factors for linear oscillations, 
accuracy  is usually achieved by increasing the  number of 
f t  evaluations per time  step. 

5. TWO-STEP METHODS 

The  results discussed in sections 3 and 4 were confined to 
one-step methods.  To  put these in  better perspective we 
now examine the  results of similar tests on the commonly 
used two-step methods defined in table 1.  

We first  note that  the “extra”  time level (n-1) ap- 
peared solely in the  function f‘”“’ for the Adams-Bash- 
forth  scheme;  only j (7)  was evaluated in the  centered 
method. This difference was reflected in  the  solutions  to 
the  linear  system. For the centered method  the  solution 
was 

X(”) q2( - 1)ne“Bn (5.1) 
where tan e=p(l-p2)-1’2. v1 and 772 were constants which 
could be  determined  by  and Lilly [lo] gave 
their  approximate form for a special case. 

The first term  in (5.1) corresponds to  the  “physical 
mode” of the  solution, modified by  computational  errors. 
The second term is the  extraneous  ((computational mode” 

TABLE 3.-Properties of two-step  computational methods taken  from  linear analysis and  the numerical  solutions of nonlinear  equations. A11 
numerical  values  are  estimates based upon the first several cycles.  Numerical  values  estimated from linear  oscillations with the same perw fE, 
as  th  nonlinear  oscillation  are  shown in parentheses.  Values for the nonlinear  oscillation  are  classijied  according to estimated “physical mode 
and “computational mode” contributions. 

Method 

Linear Periodic Solution 

I 
Nonlinear Periodic 8olution 

I I  
- 

Amplification 
factor IGI 

I I 
Physical  mode 1 Computatrnal  mode 

1 

Frequency 
error  factor lOIXnet fractional period 

energy error  per cycle 

11. Adams-Bashforth ...................... 

____._ (l+p2/6) 1 12. Centered ............................... 
1/72 
1/48 
1/24 ......................................... (severe instability  at  cycle 1.6) 

...... (1+5/12pz+. . .) (l+p4/4+. . .)Yz 

(uuwrrected) 
(instabilfty beyond cycle 20)- .......................................... 1/24 

13. Centered _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  
(wrrection A applied each 24 steps) 
(severe instability  at  cycle 5.7) _ _ _ _ _ _ _ _ _  

1 

............. 

........................ 
+445. (+%.) 

. +25.5 (+3.4) 
“6.45 (+l.Oj 

........................ 

+no.  (0) 
bounded by 

bounded by 
+24. (0) 
bounded by 
+12. (0) 

+136. (0) 
bounded by 

bounded by 
+6.8 (0) 
bounded by 
+12.0 (0) 

lWXnet fractional lOlXnet fractional 
frequency error scale error  per cycle 

per cycle 
I cycle 

I I I ........................................... 
+168. (+27.6) 
+101. (f6.9) 

+a. (0) 
+ O M  (0) 

+57. (+3.1) +0.43 (0) 

0. 

+82. (+ll .)  1 bounded by 

230. 
+2.5 (0) 

110. 
+7.5 (0) 
bounded by +62.5 (f1.2) 

410. 180. bounded by “70.2 (“3.) 
+65. (0) 

810. 388. 

................................................................... 

+167. (+ll.) ~ bounded by 330. I 360. 

+6Q. (+3.) 
-50. (0) 
bounded by 

53. i 110. -1.36 (0) 
+a. (+1.2) j +.BO (0) bounded by 

I 4 I 

298-690 0 - 68 - 4 



362 MONTHLY  WEATHER  REVIEW Vol. 96, No. 6 

introduced  by  the increased  order of the finite difference 
method. A characteristic of this mode is its sign alterna- 
tion at successive time steps. For the centered  method, 
(5.1) shows that  the maximum size of the  computational 
mode  never decreases as n increases. This is not  the case 
for the Adams-Bashforth  method, where the maximum 
amplitude  can  be shown to decrease as pn. Thus, problems 
of “starting” m d  correcting the solution in order  to 
reduce the  amplitude of the  computational modes appear 
important only  in the case of centered differences. These 
topics are discussed in Appendix A. 

Table 3 presents  the  quantitative  results  obtained for 
the two-step methods. All solutions were started  with  the 
values x ( o )  and x(” taken  from  the  exact solution  (equa- 
tion (2.3)); as discussed in Appendix A, this procedure 
does not completely exclude the  computational  mode 
initially. 

We  first note  that  computational mode oscillations (of 
period ( 2 A t ) )  never  appeared in the nonlinear case using 
the Adams-Bashforth  method.  On the  other  hand,  such 
fluctuations in E and S were apparent  with  the  centerep 
methods,  and usually exceeded those  associated  with the 
physical mode. Correction of the centered  method by 
procedure A did reduce the  computational mode, but to a 
lesser extent  than that expected from  the  linear solutions. 

The remainder of table 3 concerns the characteristics 
of the physical mode; its errors are  the  counterparts of 
those discussed for the one-step schemes in sections 3 and 
4. We first note that  the frequency  errors exceeded the 
amplitude  errors  for  linear oscillations as  in  the one-step 
methods. This mas also true for the nonlinear  solutions 
when the  time  increments were small;  with  larger incre- 
ments  the reverse was true,  and  in two instances  severe 
computational  instability  resulted. 

Comparison  with  table 2 shows clearly that, for a given 
At,  these two-step methods  usually  produced  larger  errors 
in  the physical mode than  the one-step schemes. However, 
considered on an “equal  computational  time”  basis (as 
in section 4) the  standings of the two-step  methods im- 
proved. For example, their  performance  generally  sur- 
passed that of the poorer one-step methods 2, 5 ,  6, or 10. 
Nevertheless, the tn-o-step methods  remained  generally 
inferior t,o the  outstanding one-step methods 3 and 8 in 
this case. 

Table 3 also allon-s intracomparison of physical mode 
errors for the tu-o-step methods. In  the cases of largest 
At values, the Adams-Bashforth and ‘LcorreCted-Centered” 
mekhods were rather poor. However,  with  smaller At 
yalues  t.hey  represented a slight  improvement Over the 
“uncorrect,ed-centered”  method. Considering also the 
hrge computational mode errors o f  the  centered schemes, 
one must. conclude that the Adalns-Bashforth atld “cor- 
rect’ed-centered” schemes were superior to  the “llncor- 
rected-centered”  method. 

6. CONCLUDlNG  REMARKS 
We  have examined the properties o f  computational 

schemes applied to a  spect,ral baroclinic model of maximum 

simplicity whose linear and nonlinear  characteristics were 
known. The performance of computational  methods  for 
the  linear oscillation was found to  be a better  indicator 
o f  the  nonlinear  properties t.han the order of truncation 
error.  However, the  truncation  error was useful in assessing 
local errors  associated  with  sudden  nonlinear  changes in 
the  solution.  Largest  fractional  errors mere usually  found 
in the  frequency, followed by successively smaller ones in 
the  amplitude  and  spatial  spectrum. 

For the one-step methods,  reduction of long-term  errors 
was usually accomplished most effectively by increasing 
the  number of calculations of the time  derivatives a t  
each time step  rather  than reducing the  time  increment 
At. The best one-step methods were found to be a four 
part Kutta scheme, the  three-part scheme A, Elder’s 
modified implicit, scheme, and a two-part scheme which 
utilized the  latest values of each  ordered  variable.  Other 
two-part  methods produced larger  errors. Also, the use 
o f  variable  time  increments  with  method  A  usually  resulted 
in increased local and  propagated  errors for both  types 
of oscillations. 

The two-step methods produced physical mode  errors 
which were generally larger than most one-step methods 
wit11 the same t,ime increment. In  fact, these two step 
schemes compared  favorably  only when their  computa- 
tional  time advantage mas sacrificed by using a reduced 
time  increment. In this  case, the  best of these two-step 
methods  (Adams-Bashforth) was still  somewhat inferior 
to  the best one-step methods when compared on an “equal 
computation  time”  basis. In  all cases both  the corrected 
and  uncorrected versions of the centered difference scheme 
developed relatively  large  “computational mode” oscil- 
lations  during  the nonlinear  phases of the oscillation. 

The  above conclusions should be accept,ed with a note 
of caution.  They  have been conveniently  obtained  through 
study of a small  component model. Thus, their  validity 
for systems  with  many more degrees of freedom is not 
assured. For example, a large geophysical system  under- 
going irregular oscillations possesses a variety of individual 
frequencies which are sustained by nonlinear  energy ex- 
changes involving  triads of elements  similar to  that  found 
in section 2. The mechanisms of these  transfers  are 
frequency  dependent  (Phillips [16]), so an  accurate por- 
t,rayal of the fluctuations would demand a numerical 
scheme with  small  frequency  errors as well as small 
amplitude  errors.  Most schemes do  not  satisfy  both of 
these  requirements.  This  suggests that detailed  climatic 
or energetic  studies may  require  multipart, one-step 
schemes, probably from the  Runge-Kutta  family. 

APPENDIX  A.-STARTING  AND  CORRECTION 
PROCEDURES  FOR  CENTERED  DIFFERENCES 

The purpose of this  appendix  is  to discuss some proce- 
dures  for  reducing the amplitude of the computational 
mode associated with the centered difference scheme. 

It is convenient to begin with  the linear  theory. As 
mentioned in section 5, vl and 7 2  are determined by x(n), 
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X ( ~ - I )  and  equation (5.1). At the beginning of the compu- 
tation  these  relations  are given by: 

Since the  initial  conditions x(o)  are known exactly, x") 
alone determines q1 and q2. The method  by which is 
estimated  from x ( o )  may  be  termed  the  ('st,arting method." 

The  tests discussed in section 5 were all started using the 
exact" value of x"); in  this way, it was believed that 

initial  errors would be minimized.  However,  this proce- 
dure does not  eliminate  the  computational mode com- 
pletely. This  may be seen in  the  linear case, where the 
exact solution gives 

( I  

x(l'- (0) i P a  "x e (A.2) 

Substitution  into (A.l) shows tha t   ~~=x(O)( ip~/12+ ' '  .), 
and  is  not zero. This  is  a  characteristic of other  multistep 
schemes ([7], p. 207), and  apparently arises because the 
phase  error (6-p) of the  centered scheme is not zero. 
Equations (A.2) and (A.l) also yield ~ l = ~ ( 0 ) [ l - i p 3 / 1 2 +  ...I; 
the associated amplitude  error is O(p6) while the phase 
error  is O(p3) .  

These  results  may be  compared  with those of the more 
common starting  method which  uses a  forward difference 
to  estimate x"): 

x"'- "x ( 0 )  (l+ip). (A.3) 

From (A.l) we then  obtain 

v 2 = - x x ' o ) G + .  . .), v l = x ( o ' ( l + T + .  p2 . .). 

Thus, use of the forward difference in place of the  '(exact" 
value  produces an  initial  computational mode  amplitude 
larger by a  factor of (3/p). It also produces  a  larger 
amplitude  error  in  the physical mode, of O(pz ) .  

Unfortunately, amplification of the  computational  mode 
frequently  develops  spontaneously  in  the nonlinear solu- 
tions, so that  starting procedures alone seem  inadequate. 
In  such cases correction procedures may  be periodically 
applied to reduce  the  computational mode. Two such 
methods will now be discussed. 

((Correction A" was  used in  the  tests discussed in 
section 5. It consisted of first averaging the centered 
difference solutions  and ~ ( ~ - - l ) ,  followed by forward 
and  backward differences to give the  ((corrected" values 

and i(n-1): 

When (A.4) was applied to  the  linear  system,  the  ((cor- 
rected" values $, and G2 were  found  in  terms of the original 
quantities v1 and v2. In  this case  the  results could be 
expressed as 

M<M [O(p3) ]+[0 (p4) ]  
1921 1921 

and 

Inequality (A.5) indicates  that  the  correction would reduce 
the  computational mode amplitude when it was  originally 
large enough ( 1 ~ ~ 1  >lql10(p3)). However, this correction 
could increase  the  computational mode  when it was 
initially small enough (Iq21<lvl10(p3)). Inequality (A.6) 
indicates that  the correction procedure  would  usually 
introduce  a  small ( O ( p 2 ) )  error  into  the physical mode. 

Let us now consider ('correction B," which  was not used 
in section 5. It consisted of using backward  and  forward 
differences from the  respective centered difference solu- 
tions and ~ ( ~ - l ) ,  followed by  averaging of the two 
estimates then available at each  time level: 

Application of this procedure to the  linear  system (2.6) 
gave  results  nearly  the  same as those expressed in (A.5, 
A.6) for correction A. 

Finally, corrections A and B were applied to the  non- 
linear  system  for  the case with 24 time  increments per 
cycle; the  results  may  be seen in  table A1. We  first  note 
that  both procedures appear  to  have encouraged  a  severe 
computational  instability in the physical mode while 
suppressing the  computational mode.  However, this dis- 
tressing behavior  was  not  true of correction A in cases 
with smaller time  increments (see section 5). 

On the basis of table A l l  correction A appears  slightly 
superior to  the correction B in its  ability to follow the 
physical mode. With  respect to computational mode 
oscillations in E and S, correction A was a  nearly  perfect 
damping  agent.  Correction B damped only about 95 
percent of these  energy oscillations. For this reason cor- 
rection A was chosen for the  tests of section 5. 

TABLE AI.-Time of commencement of severe computational instability 
for centered differences corrected by melhods A and B. Time  is 
given in  cycles. At=l /24  period in  all cases. 

Number of steps between corrections I Method A 1 Method B 
I I 

12 ..................................................... u.. ................................................... 
48 ..................................................... 
96 ..................................................... 
192 ................................................... 
Nocorreetion ........................................ 

2.8 

10.0 
5.7 

5.3 

>m.0 

3.1 
3.5 
6. 1 
5.0 

>20.0 
8.3 
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